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Abstract-An evaluation is made of a “universal” model of turbulent exchange due to Buleev [l] which 
gives expressions for all the components of the turbulent stress tensor and of the heat- or mass-flux 
vector. Recent successful applications of this model in a variety of cases have made it worthy of much 
attention. Here the predicted eddy diffusivities of momentum and heat or mass for flow in several 
configurations are compared with experiment. The evaluation and comparison do not substantiate the 
claim of universality. In particular, the predicted tangential eddy diffusivities of heat or mass in a plain 
tube are very different from the experimental values and an inherent restriction in the model prevents 

any improvement. 

NOMENCLATURE 

bl, bz, b3, constants in turbulent exchange process 

T’, 

T 

4 L’, w, 

u’, vi, w’, 

+ 
u 1 

V, 
I/“, 

I/*, 

x, Y, z, 
4’+> 

of mole; 

coefficient; 
constants; 
specific heat at constant pressure; 
domain of integration; 
diameter of mole; 
functions of mole behaviour; 
thermal conductivity; 
mixing lengths; 
coefficient ; 
direction of mean velocity; 
argument ; 
Prandtl number; 
argument; 
radius of tube; 
radius of mole; 

Reynolds number; 
radius of spherical co-ordinate system, 
centred on M. ; 
temperature fluctuation; 
mean temperature; 
mean velocity components in x, y, z 
directions; 
fluctuating velocity components in x, y, z 
directions; 

~IJ~~IPI; 
mean velocity; 
fluctuating velocity; 
instantaneous velocity equal to V’+ V; 

rectangular co-ordinates; 

Y &aJP)lV. 

Greek symbols 

a, dimensional coefficient; 

P? dimensional coefficient; 

4 mean free path of mole; 

K dimensionless coefficient; 

6, dimensionless coefficient; 

dimensionless co-ordinate (Y - y,)/ctL,; 

dimensionless co-ordinate (z -Z&XL, ; 
eddy diffusivity; 

density; 
kinematic viscosity; 

shear stress. 

Subscripts 

bulk or average value; 
inner radius or wall value; 
outer radius of wall value or value at M,; 
heat ; 
mass ; 
tangential. 

INTRODUCTION 

MANY attempts have been made to set up models of 
turbulent exchange based on an analogy between the 
eddy of turbulent flow and the molecule of the kinetic 

theory of gases. Few of these go further than a predic- 
tion of cross-stream momentum or heat transfer. The 
Buleev [l] analysis, however, gives expressions from 

which each one of the terms of the turbulent stress 
tensor and heat- or mass-flux vector may be calculated 
and it has been applied by him to several complex 
cases [2,3]. There appears to be no restriction on the 
generality of these results and they are applicable, at 
least in principle, to ducts of arbitrary shape, and 
boundary layers and to recirculating flows and separ- 
ation. If it were true that all the Reynolds stresses and 
all the fluxes could be calculated in any turbulent flow 
as Buleev describes, then the modelling of turbulence 
would no longer be a problem. Support for the Buleev 
model has been given recently by Ramm and Johannsen 
who used it to calculate flow and heat transfer in tubes, 
parallel-plate channels, annuli [4], and in the space 
between rod bundles [5]. Also their calculations [6] 
of the tangential eddy diffusivity of heat or mass in a 
plain tube showed excellent agreement with exper- 
iment. Most recently [7,8], they again applied the 



model to liquid metal heat transfer, apparently most 
successfLllly 

Considering that many decades of research on the 
modelling of turbulence has produced results only of 
rather limited applicability, these verifications make 
Buleev’s model worthy of much attention. Indeed 
Reynolds [9] in his important review of turbulence 
modelling considered it to be the most advanced of 

those based on the mixing-length hypothesis. 
This work consists of an evaluation of the theory 

and of comparisons between its prediction and exper- 

iment in four simple cases. 

DESCRIPTION AND EVALLIATION OF BULEEV’S MODEL 

Buleev’s results for the components of the stress 
tensor u”. U’U’ etc., and for the components of the heat- 

flux vector u’t’. r’~‘, u”t’ are given in the Appendix, 
equations (Al -A@. Each Reynolds stress or flux term 

is calculated from a complicated relationship involving 
a length scale, the gradient of the mean flow. the 
gradient of each of the components of the mean flow 
and constants and functions which are derived from 

considering the momentum- and heat-exchange inte- 

grals taken over the volume surrounding the point of 
interest. The heat-flux terms involve the local tempera 

ture gradient. These results are obtained as follows. 
Buleev’s model pictures a “mole” or eddy emanating 

from some arbitrary point, M, contributing to the 
velocity and temperature fluctuations at the point of 

interest, M,. The instantaneous values at M0 are as 

given by equations (A9). Two criticisms may be made. 

Each of the functions Jb. ,fr and fi, which are deter- 
mined from the exchange processes of the moving eddy, 
is presumed to have a value less than unity. This cannot 
be generally true. Also it is inconsistent to relate the 
temperature fluctuations to the mean temperature 
difference only. Appropriate multiplication gives equa- 
tions (AlO), and to calculate the stress tensor and heat- 
flux vector at M, the functions Fr and F2 are integrated 
over the spatial domain D surrounding M, That is 

where d(M) is a weighting function. 
This is most challengeable, since the time-average 

values are being equated to an average over a region 
of space. The process has a tenuous kinship with inte- 
grations performed in applying the kinetic theory of 
gases. But there, the functions are probability distribu- 
tions of position, speed and direction; whereas here, 
the integration is applied to a deterministic relationship 
between values at two identified points. 

The functions fb, fL and fi are deduced as follows. 
The instantaneous changes in the velocity components 
and temperature of a mole proceeding from M to A4, 
are given by equations (All) and it is clear that they 
are equivalent to an assumption that the velocity and 
temperature fluctuations decay exponentially with 

time, The coefficients ,.l , and .4 z are given b> 

and 

Here, hl, hz. hJ and j are dimensionless coefficients 
and the equations for diameter, mean free path and 

fluctuation in speed of the mole, equations (A 12). intro- 
duce three more. so that at this stage there are ,seL~ 
undetermined coefficients. The first terms of ill and 

A2 were regarded as representing a molecular mech- 
anism of exchange, whilst the second represented a 
convection of smaller moles breaking ofI the mole. It 

was assumed that hL and h2 depend on the Reynolds 
number of the mole. 2RV’,,Lb: hz depends on this and 
on the Prandtl number also. Three hardly plausible 
assumptions areinvolved. Firstly. that the time element 
dt can be replaced by dr: V where V’ is the Ructuating 

component only; secondly, that V’ is in any case con- 
stant between M and M, which is contrary to the basic 
model and, thirdly, that II. \v vary linearly between M 
and M,, which cannot be trLLe in general. On solving 

the equations with these assumptions .f;,. ,/i and .1; are 
as given by equation (A 13); but in deducing ,fi Buleev 

neglected a term similar to ,fo. 
The weighting function &M) equation (A14) is de- 

duced from a different analogy namely that of ncutron- 
flux attenuation. Buleev used the second analogy as 

though the moles were emanating from M, and by 

equating k,. the mean free path in the neutron flux 
attenuation analogy with i. the mean free path in the 

kinetic theory analogy, it can be expressed as a function 
of the length scale, L. This introduces the eighth 

unknown coefficient, L’. 
Appropriate substitution for ,fr,, .f;. ,/2 and 4 gives 

expressions for the Reynolds stresses and heat flux 
components. The results however do not agree with 
Buleev’s final forms as given in the appendix. A further 
simplification is made that the products of cosines of 

different arguments can be ignored and this entirely 
destroys confidence in the reality of the model, even 
if we accept individual steps uncritically. Products of 
cosines of different arguments arise in the analysis from 
products of the fluctuating components: products of 
cosines of the same argument arise from products in- 
volving fluctuating components and mean values. In 
the basic derivation of the Reynolds stresses the time 
averaging retains the former whilst the latter are 
identically zero. This simplification has dropped the 
terms which contribute to the Reynolds stresses whilst 
retaining those which do not. Clearly any justification 
for the Buleev model can only be heuristic. 

APPLICATION OF BULEEV’S MODEL TO SIMPLE CASES 

For a fully developed flow Buleev’s equations give 
-pu’w’ and -/)w’L?’ as identically zero but 
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With the assumption that the mean velocity gradient 

everywhere in the domain of integration is equal to the 

value at M, this can be written as an eddy diffusivity. 

Thus, 

E,,,~ = pp S[ 1 L g fo.f; 4s cos% y)dt (6) 

and by analogy, though without other justification, 

These two equations are the starting point for the 
calculation of eddy diffusivities. Two simplifying 
assumptions are made. Firstly, that all functions and 

values in the three dimensional integral are assumed 
constant on a plane perpendicular to the y axis, which 

can be true only in a very special case. Secondly, the 
resulting two-dimensional integral over the plane J’-z 
can be replaced by an integral taken along a particular 

line in this plane which makes an angle with the y axis 
of between 34 and 36”. The secant of this angle is 
introduced as an empirical coefficient, m. Introducing 
the coordinates 5 and [, then, 

and 

where another simplification has been made in that 

values in the integral are taken along the y, z axes and 

not along the line of constant angle in the plane. The 
integration over a volume of the flow has been reduced 
to a line integral, only. The function G includes the 

attenuation function 4. 
When considering the terms of the heat flux vector 

it is soon realised that for a fully developed flow the 
T- 7 expressions for -pc,u T’, -pc,v T’ and -pc,w’T 

depend on all the components of the temperature 
gradients and vary accordingly. Also -pc,u’T’ in- 
volves &lay and it is easy to imagine cases in which 

the effect would lead to anomalous results. 
The eddy diffusivity of heat expressions become 

and 

when all the appropriate simplifications and substitu- 

tions have been made. 

x .fo(ql O.f;(q1 OG(5)dt (14) 

where non-dimensional terms are introduced and the 
integration is, following Buleev, confined to - (l/g) < 
5 < (l/cc). This involved an iterative procedure in which 
an initial estimate is made of the velocity profile (the 

log law is adequate), em,, is calculated and the velocity 
gradient recalculated. When a stable result is obtained 
after six or ten iterations, appropriate integration gives 

the velocity profile. 
In evaluating the eddy diffusivities we have to give By making p a function of distance from the wall 

values to the coefficients c[, fi, p which arise from the in the sublayer, thickness y:, and by making both p 
kinetic theory model; to bl, b2, bs and 6 which arise and y: functions of Reynolds number it is possible to 
from the supposed exchange process between the achieve good agreement with experiment for E,., and 
mole and its surroundings and to c (or m) which arises for the u+ -4” velocity profile. Results are shown in 
from the simplification of the volume integral. The Figs. 1 and 2 and the variation of p with Reynolds 
coefficient 6 is given the value unity which is in essence number is shown in Fig. 3. Here the value of p is that 
an assumption that Reynolds’ analogy applies to the for the main stream where it is constant. The other 

micro-particles which break off the mole, whilst m is 

taken as 1.25. Buleev proposed a = 0.33, pa = 0.72, 

bl = 0.9, h2 = b, x Pr-“.33 and b3 = 3.5. In arriving 

at these values it was assumed that the mean free path 

and diameter of the mole are equal, that is, p = x(. 
In terms of these coefficients, the arguments of 

f0(41 <)..~I(YI El andfib, 0 are 

(12) 
(13) 

and it is obvious that the six unknown coefficients of 
the square brackets are really only one unknown 

coefficient each, c1 and c2, and the process of defining 
them all separately in the model and deducing separate 

values for them was redundant. Also it should be 
realised that if c, is determined by experiment then 

there is a severe limitation on c2. This may only be 
varied so that the sum of b, and h3 remains constant 
whilst b, TV, m and c( are the same as for cl. From the 
meaning of b, and b3 in the model it is clear that both 

must have the same sign. 

COMPARISON WITH EXPERIMENT 

There is considerable experimental evidence for tur- 
bulent flow and heat transfer in the plain tube and 
parallel plate channel. If the predictions of Buleev’s 
model do not agree with this evidence for these simple 

configurations then we must doubt the value of any 
supposed agreement between theory and experiment 
for complex situations where the experimental evidence 
is less well established. 

(a) Plain tube 

The computer programming for applying Buleev’s 
model is straightforward but lengthy and expensive in 
computer time. Calculations were made of a,,, given by 
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FIG. 1. Buleev’s theory prediction and experiment for E,,, in 
a plain tube 
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FIG. 2. Buleev’s theory and experiment for turbulent 
velocity profile in a plain tube. 
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coefficients were given the values suggested by Buleev, 
since as noted above their values are unimportant 
provided one coefficient in each group can be varied. 

On calculating E~,~, the appropriate expression is 
identical to equation (14) except thatf; replacesfi. To 
achieve agreement between theory and experiment 

6 

1 \ 
‘\ 

‘\\ 
‘\ 

‘. ,Plotn tube 
. -/_ 

--__ ---~-________-____ 

Parallel plate channel 

FIG. 3. Variation of coefficient fl with Reynolds number for 
plain tube and parallel plate channel. 

therefore we can only vary the index n and b, and b3 
subject to the condition that their sum is the same as 
that established by the calculation of c,,,. 

Results for 0.01 < Pr < 1000 for Re = 8900 and 
200000 are shown in Fig. 4 with b = 3.5, b3 = 0.9 and 
n = -0.5 where they are compared with the exper- 

imental results of Quarmby and Quirk [IO, 1 I]. The 

, Experiment [IO, I I] 
x 

%’ x Sc=O77. Re=6100--170000 

6. 0 . Pr=07,Re=11000- 160000 
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0*x”:, 
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0: 
0.00 

0 x 

. :o l . 
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,___~_-__----~----ool 

202 000 
f 0.01 8860 

I / / I 

r/r0 

FIG. 4. Comparison of Buleev’s theory with experiment for 
ratio of radial eddy diffusivities in a plain tube. 

calculations can be regarded as showing the effect of 
Pr or of showing the effect of varying the coefficient 

cl, equation (13), for a fixed Prandtl number. It was 
not found possible to improve the agreement between 
theory and experiment or to achieve the result given 
by Ramm and Johannsen [6]. 

Once the coefficients for E,., and E*,~ are determined 
the result for .a,,+ the eddy diffusivity in the tangential 
direction follows without any further possibility of 
adjustment. The result is shown in Fig. 5. Again the 

agreement with experiment is unsatisfactory and the 

theoretical result of Ramm and Johannsen is not 

produced. 
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FIG. 5. Comparison of Buleev’s theory with experiment for 
ratio of radial and tangential eddy diffusivities in a plain tube. 

Another test of Buleev’s model is possible without 
considering heat or mass transfer. As shown above, a 

result for cm,, can be obtained which agrees well with 

experiment and this may be taken as establishing the 
correct values of the unknown coefficients which appear 
in the Reynolds stress calculations. These values appear 
also in his expression for u” and it is a small matter 
to compute this in the programme for E,,,. A com- 
parison with the measurement of Laufer [12] showed 
that the theoretical prediction was out by a factor of 

up to about forty. 

(b) Parallel plate channel 
For a fully developed turbulent flow in a parallel 

plate channel Buleev’s expressions are very similar to 
those for the tube except that, y, the cross stream 
co-ordinate, replaces, r, the radius and the z direction 
is perpendicular to the plane of the flow. The eddy 
diffusivity of heat in that direction, Em,*, has a simple 
form since velocity, slope and length scale are constant. 

Again by making p a function of distance from the 
wall but not in this case a function of Reynolds number, 
it is possible to achieve reasonable agreement between 
theory and experiment for E,,~ and for the a+ - y+ 
profiles. The other coefficients had the values given 
above but this is insignificant since changing one is 
equivalent to determining a completely different set. 
The variation of p for the parallel plate channel is 
shown in Fig. 3 and compared with the value for the 
plain tube. It was intended by Buleev and reiterated 
by Ramm and Johannsen that the set of coefficients 
should be the same for all configurations. This is logical 
since they describe the behaviour of the mole, that is, 

-t-L- o k-07 Re-8980-52 xO[l31 

/- 

FIG. 6. Comparison of Buleev’s theory and experiment for 
ratio of radial and tangential eddy diffusivities in a parallel 

plate channel. 

the basic mechanism of turbulent exchange. Having to 
use a different set for the channel is thus a fundamental 

weakness in the theory. 
Figure 6 shows the results for sh,y and compares 

them with the experiments of Page et al. [13]. The 
agreement is the best that could be obtained by adjust- 
ing the coefficients subject to the restraints mentioned. 
The result for E~,~ also is shown in Fig. 6. Unfortunately, 

there are no experimental results against which this 

might be tested but the trend as the wall is approached 
is, like the corresponding result for the plain tube, con- 
trary to the experimental results for the plain tube. It 
is unlikely that the effect of the wall in a parallel channel 
should be different from that in a plain tube; so the 
theoretical prediction is again opposite to experiment. 

(c) Concentric annuli 
It is not difficult to extend the computer program 

for the plain tube to calculate E,,,~ and the velocity 
profile in a concentric annulus. To do this in the 
simplest way possible and avoid introducing sources 
of error whose effects could not be identified, initially 
the programme for the plain tube was extended to make 
the calculation along the whole of a diameter, so that 
to calculate the concentric annulus case it was only 
necessary to make a number of simple changes to the 

algebra. For example, the shear stress is a function of 
radius ratio and is different on the inner and outer walls. 

In this connection, empirical results were used for the 
radius of zero shear. This is not strictly necessary since 

given a correct model the radius of zero shear should 
be predictable along with the other matters of interest. 
However confidence in the model was not sufficient to 
justify this expense of computing time. By putting in 
the radius of zero shear as a function of radius ratio 
and Reynolds number we avoid considerable com- 
puting whilst still being able to evaluate the eddy 
diffusivities and velocity profiles. A result is shown in 
Fig. 7 for the eddy diffusivity of momentum for a radius 
of 2.88. The predictions are seven to twenty times too 
great and velocity profiles calculated from them have 
no agreement with experiment. There was no justifi- 
cation for extending the calculation to the eddy 
diffusivity of heat. 

(d) Rectangular channel 
The calculation of turbulent flow in a rectangular 

channel by Buleev’s theory is rather more complicated 



FIG. 7. Prediction and experiment for Lo,, in a concentric 
annulus radius ratio 2.88. 

than the cases described above. The mean velocity 

gradient, for example, is given by 

and two shear stresses are involved. ~~~ and 5,;. so that 
the link between eddy diffusivities and velocity gradient 
is a Poisson-type equation. The calculation is rather 
lengthy. Firstly an estimate is made of ?ui?y and ?u/Fz 

and E,,,,~ and E,,,,~ calculated from Buleev’s expressions. 
With these values, the equations are solved for the 
velocity gradients by a finite difference procedure for 
the whole of the channel. Recalculation of the eddy 

diffusivities can then be undertaken. 
Some results for the velocity profiles in a square duct 

for Re = 10000 and 100000 were obtained which 
bore some resemblance to measured isovels. The results 
for the eddy diffusivity were unsatisfactory and in fact 

the theory predicted that the friction factor increases 

as Reynolds number decreases. This is clearly wrong 
as the comparison with the experiments of Hartnett 
et al. [15] shows, Fig. 8. 

0010 

-.__ 
--._ b 

--__ 
--__ 

--_ 
a Theory 

--__ 

b Experiment [I51 

Re 

FIG. 8. Predicted friction factors and experiment l’or a 
square duct. 

In all of the calculations care was taken to eliminate 
errors due to the numerical methods used. Some of the 
calculations were repeated with twice as many steps. 
Thus in the tube case two hundred points were taken 
along the radius on occasion. Different quadrature 

methods were used to evaluate integrals and the ctl’ect 
of decreasing the step length, that i\. increasmg the 
number of quadrature points was in\cstigatcd. It oh 

believed that the results are accurate calculatlonz of 
the theory. This is in contrast to Bulcev’s calculations 
which themselves imolvcd certain further approxi- 
mations and simplifications. 

It is clear that Bulcev’s claim to have provided a 

means of calculating Ihc Reynolds stresses and com- 

poncnts of the heat Rux vector in a wide variety of 
cases is not substantiated. The most the theory was 
able to do was to predict J:,,,,, and the velocity profile 

in two simple cases namely fully developed flow in the 
plain tube and parallcl plate channel. Accordingly it is 
not more “unitersal” than Prandtfs mixing length 
theory. Indeed. examination of the model shows that 
this is what it is in etrect. Thus. although the model starts 

with a very general picture of turbulent exchange, the 
simplifications and assumptions made reduce it to ;I 

suggestion that the eddy diffusivity in any direction 
can be calculated from a weighted integral of [[; C”?rl] 
in that direction. Using such an integral does allow us 
to calculate the eddy ditl’usi\ity al points whcrc the 
velocity gradient is zero and thus one of the greatest 
shortcomings of the mixing length theory is avoided. 
Similarly, using a length scale which is deduced by 
integrating over the whole area of the flow allows a 
value to bc obtained for ducts of complex shape. 

The essential equivalence of Buleev’s results and the 
Prandtl mixing length theory becomes more obvious 
if we consider the values which the wjeighting functions 

take over the range of integration used. The range of 
integration is - I :‘x < < < I x. that is. -L, < 1. c L,, 
for any point jtO in the flow. Close to the wall L,, 15 very 
close to y,, whatever the shape of the duct. So that 

integration is taking place over a small distance about 
J’~. In the ccntre although the range is greater the 
variation of parameters is Icss. In addition, the wcight- 
ing functions all contain decaying exponentials which 
severely attcnuatc contributions to the intcgrat except 
near the point J‘,,. All these factors make the integral 
expression for eddy diffusivity closer and closer to an 
obvious application of the mixing length theory. This 
is clear from examination of equations (8) and (Y). 
Table I compares the results for J:,,,, for ;I plain tube 

Table I. Comparison of calculated results for L,,., for (a) 
length scale and velocity pradicnt functions of i: and (b) 

length scale and velocity gradient constant 

5” 

0.97 
0.93 
0.90 
0.85 
0.75 
0.5 
0.25 

i P’ (^ 1’ 
L. both /(il 1.. constant 

it1 c-11 

R? 

9000 200 000 9000 200 000 

0.0024 0.0022 0.0022 0.0022 
0.0 130 0.0107 0.012x 0.01 IO 
0.0249 0.0345 0.0242 0.0358 
0.0389 0.0483 0.0392 0.0496 
0.0575 0.0687 0.0587 0.0698 
0.0780 0.08X7 0.0797 0.0898 
0.062X 0.0692 0.0643 0.07 I x 

__~~ ~_~~ ._~ 
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when the calculation is made with L and c?V/Sn varying 

with 5 with those when they are constant and equal 

to L, and [(:V,@n], respectively. Clearly this latter 
case is exactly a weighted mixing length calculation 

and the almost identical results confirm the view that 
that is what Buleev’s theory is in essence. 

It is instructive to examine the values which qz, 
equation (13) can take since this determines the eddy 

diffusivity of heat. For any point in the flow, qz will 
vary only with Prandtl number and the effect on &h,, 

was shown in Fig. 4. As Pr is varied this could be 
regarded as altering the coefficients but keeping Pr fixed 
so that Fig. 4 shows the effect of changing q2 for 
Pr = 0.7, say. We cannot alter n arbitrarily since that 
might give an etfect of Pr which was contrary to 
experiment. It is well established that the ratio &h,, to 
c,,, decreases as Pr decreases. Values for liquid metals 
are less than for air, for example. If the index n could 

have values greater than one, anomalous results would 
follow. Table 2 shows the effect of varying the coef- 
ficients and Pr and clearly this represents a wide vari- 
ation of q2 for Pr = 0.7. The result for Pr = 1000 is 
about the limit of what can be done to achieve agree- 
ment between Buleev’s theory and experiment, This is 

Table 2. Effect of altering coefficients hl, hj and n on 
ratio I:~,~/c~,, in a plain tube 

Eh.rihn,r 

t = 0.99 ; = 0.9 
b3 n 

1.165 1,056 0.93 3.51 -0.5 
1.205 1.068 0.24 4.2 -0.5 
1.199 1.066 0.34 4.1 -0.5 
1.193 1.064 0.44 4.0 -0.5 
I.148 1.050 1.24 3.2 -0.5 
1.132 1.045 1.54 2.9 -0.5 
1.165 1.055 0.93 3.51 -0.75 
1.165 1.055 0.93 3.51 0.33 
I.165 1.055 0.93 3.51 0.2 

easily seen since the theoretical line approaches the 

experiment as Pr increases and q2 decreases. Since q2 is 
the argument of an exponential function, increasing Pr 

makes the function unity which is, of course, indepen- 

dent of the values of the coefficients. Another point of 
significance in the assessment of Buleev’s theory is that, 

for Pr = 1.0, Ch,? is equal to E,,, since q1 and q2 become 
identical as do equations (8) and (10). This result is 
independent of the values of the coefficients. Thus 
Buleev’s theory reduces to Reynolds’ analogy for Pr = 

1 .O and gives the ratio of ch,r to E,,,,~ as unity. Clearly 
this is a very disturbing anomaly since it would still 
have occurred had it been possible to achieve good 
agreement with experiment for Pr = 0.7; that is. to 
predict the ratio as greater than unity. 

Further on examining the effect of qz in the calcu- 
lation of &h,w. it is clear that the result claimed by 
Ramm and Johannsen [6], that the ratio &h,w to &h,r 
is greater than unity and in agreement with experiment, 
Fig. 5, is impossible. Any point on the radius, &,, the 
value of the integral for positive values of 5, that is 
towards the wall, is less than for negative values, that 

is towards the centre. So that the contribution of the 
integral for 0 < 5 < l/a to equation (10) can be 

negligible compared with the contribution of the 
integral for - l/a < 5 < 0. This is made clear by con- 

sidering the argument q2 which can be rewritten in 
non-dimensional terms as 

12m (h, Pr’-“+b3) 
q2 = ~ 

px rJLt 

1 
(16) 

Significant variations in ~1~ are due to variations in L. 

Thus, at a point near the wall. for < positive, L < L, 

and accordingly q2 is large and the negative exponential 
weighting function severely attenuates the integrand. 

Table 3. Values of the product of the weighting functions 
fb,fi and 4 at the Gaussian quadrature points for different 

wall distances 

n J+ = 3 12 42 135 
4 0 0 3.90-8 3.57-3 
3 0 0 4.38-5 1.03-2 
2 0 1.47-8 6.55- 3 4.45-2 
1 0 1.49-2 1.28-I 2.13-l 

-1 1.52- 3 1.31Ll 2.22-l 2.3441 
-2 5.32-4 3.67-2 6.56-2 6.70-2 
-3 3.40-4 1.56-2 2.73-2 2.65-2 
-4 2.65-4 9.70-3 1.74-2 1.47-2 

For 5 negative, L, < L and the reverse is true. Table 3 

gives the values of the product of,fO(<), f;(t) and G(t) 
at the n quadrature points of a nine point Gaussian 
formula. The values are given in floating point form 

with the figure on the right of each column giving the 
exponent. A zero indicates a value less than lO_‘“. 

When a calculation is made of Eh,w, equation (II), 
for the case of the plain tube, the integration is along 
a chord, that is, towards the wall and L, at each point 
[, will be less than L,. This is true for both halves of 
the integration. Accordingly, the integral - l/m < q < 
11~ producing 6h,w will always be less than the integral 
- l/a < 5 < 11~ producing sh,, and the ratio of c,,~ to 
eh., wih always be less than unity except at the centre 
of the tube where it will be identically unity. 

Finally, it should be realised that, as equation (6) 

shows, the Buleev model is one in which the turbulence 
is functionally dependent on the mean field only. It is 

known, Bradshaw [ 1.51, that approximations in which 
the turbulence is closed on itself are in far better accord 
with the physics of the motion. Accordingly, it would 
not seem to be worthwhile to attempt to improve the 
Buleev model either by modifications to the exchange 
process or, like Ramm and Johannsen [4.7], by using 
special definitions of the length scales chosen to fit 

each particular case. 

CONCLUSIONS 

A careful assessment of Buleev’s analysis of turbulent 
exchange shows several steps which are illogical or 
inconsistent so that the justification for the model can 
only be heuristic. Further, although the model is 
apparently quite general the assessment shows that the 
simplifications introduced in applying it to specific 



cases reduce it to a slightly complicated variation of 
Prandtl’s mixing length model. On applying the model 
to the prediction of turbulent flow and heat transfer 
in four simple cases it seems that the model works where 

Prandtl’s model works but not otherwise. Thus it is 
possible to adjust the coefficients of the model to 
achieve good agreement between prediction and exper- 

iment for c~,, and the velocity profile in a plain tube 
but poor agreement follows when these coefficients are 
used to predict other turbulence quantities in a plain 
tube. Different coefficients allow good agreement to be 
achieved for a parallel plate channel for the corre- 
sponding quantities, E,,,~ and U+ - Jj*. However on 
using the first set of coefficients for a plain concentric 

annulus and the second for a square duct completely 
unsatisfactory results are obtained and it is clear that 
the coefficients would have to be adjusted further to 

give good agreement with experiment. Accordingly 
Buleev’s claim to have produced a “universal” model 
of turbulent momentum exchange applicable to ducts 
of arbitrary cross-section is not substantiated. 

It is not substantiated for heat or mass exchange 
either since there is poor agreement between prediction 
and experiment for the radial and tangential eddy 
diffusivities of heat or mass in a plain tube. This agree- 
ment cannot be improved by adjusting the one further 
coefficient allowed by the model and indeed, exam- 
ination of the form of the equations resulting from the 
model shows that it cannot give the correct variation 
near the wall of the ratio of these quantities. 
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APPENDIX 

Buleev’s expressions for the terms of the turbulent stress 
tensor are : 

where 

F; = p 

0,; = i‘ ,f,%‘c$ cos(s, x,) cos(s. ui)dT (5) 
D 

whilst L is a mixing length, i’V/?n is the mean velocity 
gradient and .fO, ,fi and d, are functions of the turbulence 
model. For the terms of the heat flux vector he gives 

where 

Gf: = /i 1 ,fo,f;S4 COS(S. .XdCOS(S. .XjIdr (7) 

and 

lJ>!/ = 
i 

.f; fz ~‘4 cos(s. x,) cos(s. rj)dr. (8) 
D 

In the last equation f; also arises from the turbulence 
model. 

The turbulence model postulates that at any point MO 
the instantaneous fluctuations are related to those at any 
other point, M, by 

and 

so that 

u’(M,) = u’(M)fo + [u(M) - U(M,J]j, (W 

w,‘(MJ = w’(M)Jb + [Li(M) -fi(Mo)] fi @b) 

T’(Mo) = [T(M) - 7(1X)1 12 (9c) 

pu’(iM,)w’(M.) = {u’(M)fb + [i(M) -,U(M&/‘, ; 
x (d(M),fo + [C(M)- ii;(M,)].f~) 

= F,(MMo) (lOa) 
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and 

PC,r4‘WT’(W = c,(u’(M)fo + [I(M) -C(IM,)]f1} 

x J[W) - WfJlf2J 

= F2(MMo). (lob) 

During a flight from M to MO the instantaneous value 
u*, w* and T* change according to 

du* =;A,(&u*)dr Ula) 

dw* = ;A,(&w*)dt (1 lb) 

dT* = ; &(T- T*)dt (llc) 

whilst the diameter, mean free path and instantaneous 
velocity fluctuations are given by: 

d = flL (124 

I = aL (12b) 

“‘= L!!L P 
i 1 an WC) 

Solution of equations (9-11) of this section identifies 

k, fi and h as 

f0 = expt - ~1s) (I3a) 

fi = [I-exp(-prs)llpts (13b) 

h = [I-exp(-~241/~2s (13c) 

where pt is 3Al/RV’, p2 is 3A2/RV’ and s is the distance 
from M to MO. 

The weighting function, 0, derived from the analogy with 
neutron flux attenuation, is given by: 

c 
4 = ---exp(-kos) 

4?W2 

The length scale or mixing length is defined by an average 
over the area of flow so that L in equations (12) above is 
given by: 

1 2n 1 
-= 
L I 0 rd4 

(15) 

where I is the distance from the point in question to the 
tube wall along the direction of angle 4. 

SUR LE MODELE DE BULEEV DU TRANSFERT TURBULENT 

R&sum&Un modele “universel” du transfert turbulent dti a Buleev [l] est examine, modtle qui fournit 
des expressions pour toutes les composantes du tenseur des contraintes turbulentes et du vecteur flux de 
chaleur ou de masse. Des applications recentes de ce modtle dans des cas varies ayant donnt des rtsultats 
satisfaisants, une plus grande attention lui a tte accordee. On compare ici avec l’experience les previsions 
des diffusivitbs turbulentes de quantite de mouvement, de chaleur ou de masse dans des ecoulements 
presentant plusieurs configurations diflerentes. Les calculs et comparaisons ne confirment pas I’exigence 
d’universalitt. En particulier, les diffusivites turbulentes tangentielles de chaleur ou de masse calculees 
dans un tube lisse sont tres differentes des valeurs experimentales et une limitation inherente au modele 

lui-mime interdit toute amelioration. 

EINE AUSWERTUNG DES BULEJEW-MODELLS FtiR 
TURBULENTEN AUSTAUSCH 

Zusammenfassung-Fiir ein “universelles” Model1 des turbulenten Austausches nach Bulejew wird eine 
Auswertung durchgefiihrt; es werden dabei alle Komponenten des turbulenten Spannungstensors und 
des Warme- und Stoffstromvektors herangezogen. Kiirzliche erfolgreiche Anwendungen dieses Modells 
lassen es beachtenswert erscheinen. Die berechneten Werte fur den turbulenten Impulsaustausch und 
fiir den Warme- oder Massenstrom in verschiedenen Anordnungen werden mit Experimenten verglichen. 
Die Auswertung und der Vergleich untersttitzen nicht den Anspruch auf Universalitat. Besonders stark 
sind die Unterschiede zwischen den experimentellen Ergebnissen und den berechneten Werten fiir 
tangentiale turbulente Ausbreitung von W&me oder Masse in einem einfachen Rohr. Eine dem Model1 

anhaftende Beschrinkung verhindert Verbesserungen. 

OUEHKA MO,QEJlM TYP6YJIEHTHOCTM GYJ-IEEBA 

AwoTauHn - DpOBeneHa OUeHKa ((yHIiBepCaJtbHO8)) MOJJeJlK Typ6yneHTHOrO nepeHoca [ 11, KOTOPUI 

fl03BOJlReT flO,IyWlTb BbIpESKeHU,, A,,,, BCeX KOMnOHeHTOB TeH30pa T,@,‘,IeHTHbIX Hanp,VKeHRti W 

BeKTOpa nOTOKa TeIIJIa FiJIR MBCCbI. DOCneAHHe yCneIIIHble HCnOJlb30BaHWR AaHHOfi MOACJIH B pa3JIHY- 

HblX CJIy%flX npHBJIeKA&i K Heti BHWMBHHe. B AaHHOi-, CTaTbe PaCWTHbIe K03@HL,HeHTbI Typ6yJIeHT- 

HOrO nepeHOCa KOJIH’IeCTBa ABWKeHHX W TenJla HSIW MaCCbI B pa3JIWiHbIX MOMJInX TeSeHWII C,,aBHH- 

BBIOTCII C 3KCnePklMeHTWlbHblMB. OUeHKa W CpiiBHeHHe He nOATBep~AatoT nOAHOR ,‘H,SBepCa,,bHOCT,f 

MOneJlH. B WCTHOCTH, PaC’ieTHbIe TaHreHqLiaHWlbHbIe K03+$iUHeHTbI nepeHOCa TenJla EiJIH MaCCbI 

B rpy6e npOCTOti KOH&irypaukiH CyLUeCTBeHHO OTJIHVQIOTCII OT 3KCnepEiMeHTanbHbIX. npkiCyLIWe 

MonenH orpawweww He n03BOnHIoT YCOBepIAeHCTBOBaTb eB. 


